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Abstract

Finite element simulation of transient laminar flow past an in-line tube bank is carried out using a velocity correction procedure.
The two-dimensional unsteady Navier—Stokes and energy equations are solved using an explicit and a semi-implicit algorithm for a
Reynolds number of 100, a Prandtl number of 0.7, and pitch-to-diameter ratios (PDR) of 1.5 and 2.0. The Galerkin weighted re-
sidual formulation is used for the discretization in space. Numerical flow visuals are drawn, showing the time evolution of stream-
lines. Local and average Nusselt numbers, pressure, and shear stress distributions around the cylinders have also been determined.
The results compare well with existing numerical simulations. © 1998 Elsevier Science Inc. All rights reserved.
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Notation

G skin friction coeflicient

C,  pressure coefficient

D diameter of the cylinder

h heat transfer coefficient

k thermal conductivity

Nu  Nusselt number (hD/K)

P nondimensional pressure (p/pU?,)
Pe  Peclet number (Re'Pr)

Pr Prandtl number (uC,/k)

Re  Reynolds number (U,.D/v)

T temperature

7i, bulk temperature at minimum cross section

U nondimensional axial velocity (u/U,,)

14 nondimensional normal velocity (v/U,,)

X nondimensional axial coordinate (x/D)

Y nondimensional normal coordinate (v/D)

Greek

0 nondimensional temperature (T — T, }/(T,, — Tin)
v coefficient of kinematic viscosity

u coefficient of dynamic viscosity

p density

T nondimensional time (#*U,,/D)
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Subscripts
av  average
w  wall
in inlet

1. Introduction

Flow past tube banks with various configurations has wide
ranging practical applications. such as in heat exchangers, nu-
clear reactors, boilers, condensers, waste heat recovery sys-
tems, cooling of electronic equipment, etc. An understanding
of the wake behavior and the associated dynamics for flow past
an array of tubes forms the first step for better design of the
above-mentioned heat transfer equipment. Zukauskas (1987)
has reviewed the experimental data of his group on forced con-
vection past tube bundles.

The advent of modern high-speed computers has paved the
way for the numerical solution of heat and momentum transfer
problems in tubular heat exchangers. The first numerical inv-
estigations were reported by Launder and Massey (1978) for
the tube bank problem. The numerical work of Fujii et al,
(1984) made use of a finite-difference method. They used a
one step forward and half a step backward iteration procedure,
which is a hybrid technique to solve the stream function vorti-
city and energy equations for a five-row deep tube bank with
1.5 x 1.5 pitch-to-diameter ratio (PDR) and for Reynolds
numbers up to 300. Dhaubhade] et al. (1986) presented a fi-
nite-element solution to the problem of steady flow across an
in-line bundle of cylinders for Reynolds numbers up to 400
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and pitch-to-diameter ratios PDRs of 1.5 and 2.0. Wung and
Chen (1989) made finite analytic calculation of convective heat
transfer for in-line and staggered tube arrays in cross flow with
Reynolds numbers ranging from 40 to 800 and PDR = 2.0.
Numerical predictions of laminar and turbulent fluid flow
and heat transfer around staggered and in-line tube banks in
two and three dimensions were presented by Franz et al
(1995). However, in all these investigations. mostly steady-
state results have been reported. To have a better insight, an
analysis of the time evolution of flow over tube bundles is
equally important, which is not now available in the literature.

Unsteady external flows with transients for convective heat
transfer have recently received greater attention in connection
with the increasingly greater use of automatic control devices
for the accurate control of fluid flow in high-performance heat
exchangers. Accurate regulation of fluid flow is of primary im-
portance, when the positive control of these industrial devices
must be ensured, which requires a better understanding and
more precise evaluation of flow and thermal transients. This
also has ramifications in the starting and shutting down phases
of heat exchange.

In the present investigation, two algorithms (explicit and
semi-implicit) have been implemented to solve the unsteady
two-dimensional Navier-Stokes and energy equations. This
study is primarily concerned with the transient fluid flow and
thermal response of in-line tube banks, where emphasis is giv-
en to numerical flow visualization. The tube bank arrangement
selected for the study is an in-line array with PDRs of 1.5 and
2.0. A Reynolds number of 100 and Prandtl number of (.7
have been used. Time evaluation of streamlines, temperature
contours, local and average Nusselt numbers, and pressure and
shear-stress distributions around the cylinders are presented.

2. Formulation and numerical procedure

For two-dimensional flow of an incompressible fluid with
negligible viscous dissipation, the dimensionless form of the
Navier-Stokes and energy equations can be written as follows.

Continuity:
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The solution algorithm employed in the present study is
based on an Eulerian velocity correction method (Donea et
al., 1982: Ramaswamy et al., 1992). In each time-step of the al-
gorithm, the following four steps are repeated:

1. calculating intermediate velocities by ignoring the pressure
term from the momentum equations;

2. evaluating for pressures from the pressure Poisson equa-
tion;

3. correcting the intermediate velocities; and

4. obtaining the temperatures from the energy equation.

The finite element spatial discretization is performed using

linear triangular elements. The Galerkin-weighted residual

method is used to formulate the spatial discretization. The pro-

cedural steps involved are given in an early study by Patnaik

et al. (1996) while solving the problem of flow past a circular
cvlinder. The formulation is elaborated in detail in Krishne
Gowda (1996).

3. Problem statement
3.1. Flow geometry

The physical model of flow around a five-row deep in-line
tube bank is shown in Fig. 1. It is well established from the ex-
perimental flow visualizations of Braun and Kudriavtsev
(1995) that the heat flux between the third and fourth row in
a five-row bundle of cylinders is equivalent to the heat flux be-
tween any two adjacent inner rows of an infinite bundle of cyl-
inders. For relatively low Reynolds numbers and closely
packed cylinders, it is reasonable to assume that the wake of
each cylinder is symmetric. In fact, no shedding is likely to oc-
cur, even at moderate Reynolds numbers, if the cylinders are
tightly packed. It is assumed here that the symmetry lines exist
as depicted in Fig. 1. The computational domain is shown by a
thick dotted line. A close-up view of the finite element mesh is
shown in Fig. 2. The grid is gencrated by an isoparametric
mapping procedure. It is judiciously chosen and is very fine
in the regions where the gradient fluxes are very high. Further-
more, the band width is reduced by implementing the Collins
(1973) algorithm to exploit the storage space and the comput-
ing time involved. The inflow boundary is located at five cylin-
der diameters in front of the first row of cylinders. Similarly, in
order to minimize the effects of the outflow boundary condi-
tions on flow characteristics in the vicinity of the fifth cylinder,
the computational mesh has been extended up to 15 cylinder
diameters downstream of the fifth row of cylinders.

3.2, Boundary conditions

The following boundary conditions have been used for the
computations:

a. cylinder surface: No slip (U

b. axis of symmetry: I = 0.0;

¢. inlet: uniform flow and 0 = 0.0; and

d. exit: P =0.0.

=} =0.0)and 0 = 1.0;
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Fig. 1. Physical model.
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Fig. 2. Close-up view of finite element mesh.

3.3. Initial conditions

In the present investigation, the flow and thermal behavior
during the starting phase of the heat exchange is of particular
interest. Therefore, to closely simulate this behavior
0=0,U=0, and ¥V =0 are specified everywhere at 7 = 0.
For t > 0, the boundary conditions as specified above are im-
posed. The subsequent development of the flow and thermal
fields are monitored.

3.4. Grid independence test

It is well known that the discretization process involves an
error that can be reduced in principle, by grid refinement. The
following three meshes are considered for the grid sensitivity
analysis. The problem under consideration is an in-line tube
bank with pitch to diameter ratio of 1.5:

(A) 1727 nodes; 3072 elements;

(B) 2539 nodes; 4608 elements; and

(C) 2945 nodes; 5376 elements.

In the present computations, mesh B has been arrived at as
the optimum mesh. The computational results show a maxi-
mum difference of about 1.5% in the local and average Nusselt
numbers between grids B and C. Also, the B mesh has been
chosen for further analysis, because the results predicted from
this mesh also agree well with the available results for steady
flow past in-line tube bundles.

4. Comparison of explicit and semi-implicit schemes

Unlike the case of the explicit scheme, in the semi-implicit
scheme, the intermediate velocity and the temperature fields
are actually solved from the algebraic equations. This con-
sumes considerable CPU time. In the case of an explicit
scheme, mass lumping greatly simplifies the solution procedure
and reduces it to merely an updating procedure. Thus, the time
taken for each iteration in an explicit scheme is much less than
that for a semi-implicit scheme. However, from stability con-
siderations, the semi-implicit scheme allows a much larger time
step and results in a reduction of the total CPU time compared
with an explicit scheme.

Table 1 shows a comparison of the computational time re-
quired by the two numerical schemes for the case of flow over
an in-line bundle of cylinders at Re = 100 and Pr = 0.7. The
table clearly reveals that the semi-implicit scheme 1s about

two times faster than the explicit scheme. Thus, the results of

Table 1

Comparison of explicit and semi-implicit schemes on a PC486
Details Explicit Semi-implicit
Time required for 100 time steps 215 s 618 s

Total number of time steps 11,250 1500

Total time required to reach steady state  6.72 h 35h

this comparison clearly weigh in favor of the semi-implicit
scheme for the present investigation.

5. Results and discussion

Transient fluid flow and heat transfer past an in-line tube
bank has been numerically simulated for PDRs of 1.5 and
2.0, Reynolds number of 100, and Prandtl number of 0.7.

5.1, Streamlines

The time evolution of streamlines for flow past tube banks
is depicted in Fig. 3. The first instant when the flow comes into
contact with the cylinders, its presence will not be felt by the
flow. Hence, the inertia forces dominate the viscous forces.
In the case of PDR = 1.5 and at t=0.1 (Fig. 3(a)), the
streamline pattern resembles that of an inviscid flow. The
streamlines here show a fore and an aft symmetry as in the po-
tential flow. Furthermore, the symmetry is lost at t = 0.2, ex-
cept for the last row of cylinders, the incipience (the first time
appearance) of separation can be seen on all the rows of cylin-
ders, where the boundary layer separates. The eddy in which
the fluid circulates keeps growing with time until it reaches
steady state. The first reattachment of the eddy onto its down-
stream row of cylinders is scen at around 7 = 0.5. The size of
the eddy between the cvlinders grows with time and has
reached maximum size at v = 0.7. This implies that the recircu-
latory eddy passes through a maximum before settling down to
a steady-state value. The length of the recirculatory eddy be-
hind the fifth row of cylinders increases with time, while the
width of the eddy has reached a temporary maximum before
reaching the steady state. It is observed from the plots that
the time of separation and reattachment is also a function of
PDR. However, for the sake of brevity, only the steady-state
results are presented for PDR = 2.0 in Fig. 3(g).

5.2, Isotherms

Fig. 3 also shows the time evolution of isotherms. These
portray the movement of heat flow at a given instant of time.
In Fig. 3, it can be seen that, irrespective of the time, the iso-
therms are crowded over the front half of the first row of cyl-
inders, indicating a high radial heat flux. In the upstream
region of the first row of cylinders, this distribution is regular,
packed, and remains uninfluenced, even after the steady state
is reached. The isotherms at 7 = 0.1 of Fig. 3 are crowded over
the entire cylinder and ure symmetrical. As time passes, this
symmetry is lost because of the recirculation region between
the cylinders. The growth of isotherms follows that of the
streamlines. Crowding of isotherms over the entire front half
of the first row is understandable, because the thermal boun-
dary layer growth begins from the first row. Over the other
rows, low velocity recirculating flow interacts with parts of
the front half of the subsequent cylinders. It is also seen from
the plots that there is crowding of isotherms only over those
regions where the flow has not separated.
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Fig. 3. Streamlines and isotherms for PDR = 1.5 and 2.0: streamline () values —0.020. -0.015, —0.010. - 0.05.0.0,0.05.0.10,0.15.0.20, and 0.25:

isotherm (0) values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. 0.7, 0.8. 0.9. and 1.0.

3.3. Skin friction coefficient

Shearing action between the fluid and the cylinder surface
results in viscous friction, which is also known as skin friction.
The local skin friction coefficient is defined by

G = RedY |, ., (3)
The time evolution of local skin friction coefficient around
the cylinders is shown in Fig. 4(a) for PDR = 1.5. At
7 = 0.1, the distribution of skin friction coefficient is of the
same form for all the rows of cylinders and for both the cases
under investigation. This is because the flow initially behaves
like a potential flow. The maximum local friction coefficient
is the same for all the rows of cylinders. At T = 1.0, the skin
friction distribution is almost the same for all the rows of cyl-
inders except the front half of the first row and for the region
over the rear half of the last row. The minimum value of C;
that is initially on the rear half of the cylinders has shifted to
the front portion of the cylinders with progress in time. The
negative maximum value for all the rows of cylinders (except
the first row) can be seen at ¢ = 1.0, and then it decreases by
the time it reaches steady state. Comparison of local skin fric-
tion coefficients for the case of an in-line tube bank with
PDR == 1.5 with Dhaubhadel et al. (1986) for the steady state
is shown in Fig. 4(c). A good comparison can be seen. The
steady-state distribution of friction coefficient is given in
Fig. 4b). As the PDR is increased to 2.0, the distribution

of the local friction coefficient is found to be same, up to
© = 1.0. The rate at which these values are decreasing is also
the same for all the rows of cylinders. The values of local
friction coefficients for all the rows of cylinders are less when
compared to corresponding rows at PDR = 1.5. This is be-
cause the velocity gradients are lower at higher pitch to diam-
eter ratios.

The variation of average friction coefficient up to = 0.1 is
found to be the same for all the rows of cylinders, but it is seen
to be dependent on PDR. During the starting phase of the
flow, there is a monotonic decrease in the values of average
friction coefficients over all the rows of cylinders. The value
of the average friction coefficient is greater for the first cylin-
der, as compared with the rest of the cylinders. Increasing
the PDR 1o 2.0, the time taken for the average friction coeffi-
cient to reach a steady-state value is observed to be greater.

5.4. Nusselt number

Nusselt number is one of the vital parameters of interest to
the designer. The local Nusselt number is defined by

Oy — Oy, 00

Nu = TS .
YT e or|,, (6)
Fig. 5 shows the distribution of local Nusselt numbers
around the cylinders with time. In the initial phase, the distri-

bution of local Nusselt number is almost the same on all the
rows of cylinders and for both the cases under investigation.
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Fig. 4. Distribution of local friction coefficients: PDR == 1.5,

In the case of PDR = 1.5 and at 1 = 0.1 (Fig. 5(a)), the maxi-
mum local Nusselt number occurs at an angle of 50° over all
the rows of cylinders. At r = 0.5, local Nusselt number value
over the first row of cylinders is less, when compared to other
rows of cylinders. It has been observed that for t = 5.0, the lo-
cal Nu distribution in the range of 0-120° has almost stabilized
for all the rows of cylinders except for the rear half of the fifth
row. The size of the recirculation zone between the cylinders
influences the local Nusselt number. This influence can further
be seen in the form of higher local Nu values on the aft of the
last row of cylinders. The plots indicate that the angle at which
the maximum local Nu occurs has moved from 50° (at T = 0.1)
to 60° (steady state). The steady state is reached around
t = 15.0 (Fig. 5(c)). Here, it can also be noticed that the Nu-
sselt number distribution for the first row differs from the sec-
ond and subsequent rows. This happens as there is no “‘wake-
shading” influence on the upstream of the first cylinder. As a
result, the thinner boundary-layer over the first cylinder leads
to a higher temperature gradient and, thus, higher heat trans-
fer at the cylinder surface. For the local Nu disiribution over
the first cylinder, the minimum Nu in the plot corresponds
to the boundary-layer separation point. The maximum Nu
for the first row occurs at around 60°, which is in agreement
with Fujii et al. (1984) and Dhaubhadel et al. (1986). A good
agreement of local Nusselt number for the case of in-line tube
bank for PDR = 1.5, with that of Dhaubhadel et al. (1986) can
be seen for steady state. In the case of PDR = 2.0, the local
distribution of Nu around the cylinder is found to be of the
same form up to 7 = 1.0, unlike the case for PDR = 1.5. Only

the steady-state results are presented for PDR = 2.0 in
Fig. 5(d).

The variation of average Nusselt number with time for dif-
ferent rows of cylinders have been obtained. Up to t = 0.1, the
value of the average Nusselt number is independent of PDR.
In both the cases under investigation, a drastic decrease in
the average values has been noticed up to the point of separa-
tion. The values of average Nusselt numbers have reached
their steady-state values at around 7 = 10.0. Average Nusselt
numbers are found to be higher for smaller pitch to diameter
ratios and vice versa.

5.5. Pressure coefficient

The pressure coefficient is defined as
CP = 2(P - Pin)- (7)

Fig. 6 shows the pressure distribution along CD of the
computational domain. The pressure drop across the first
row of cylinders is almost identical with the one over the front
of a single cylinder and remains unchanged even after the flow
reaches steady state. This holds good for both the PDRs under
investigation. From the second row onwards, the pressure
drop and recovery are time dependent. It can be seen from
the plot that, before the flow stabilizes, the pressure distribu-
tion temporarily oscillates with time. It is conjectured that this
minor oscillation is due to the eddy size passing through a tem-
porary maximum before reaching steady state. Another obser-
vation is that the length of the recirculation zone behind the
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fifth row of cylinders has an influence on the pressure drop and
recovery. Furthermore, the pressure drop across the tube bank
with PDR = 2.0 is lower (when compared to PDR = 1.5),
which is physically consistent with the flow field.

6. Summary and conclusions
Transient fluid flow and heat transfer past an in-line tube

bank is numerically simulated by two schemes; namely explicit
and semi-implicit. A Reynolds number of 100, Prandtl number

of 0.7, and PDRs of 1.5 and 2.0 are chosen for the investigat-

jon. The main results of the present investigation are summa-

rized as follows.

e A comparison of two schemes, namely, explicit and semi-
implicit has been carried out, which indicated a reduction
in the CPU time for the semi-implicit scheme.

e Numerical flow visuals are drawn with respect to time,
which depict the eddy growth in the recirculating regions
and its subsequent steady state behavior.

e The variation of the Nusselt number with time is rapid dur-
ing starting phase of the heat exchange between the cylin-
ders and the fluid, as for the average friction coefficient.

o The rates of decrease in the values of average Nusselt num-
bers and the average friction coefficients are found to be de-
pendent on PDRs and are higher for smaller PDRs and vice
versa.

o A higher pressure drop across the bank is seen for PDR of
1.5 than for PDR = 2.0.
References

Braun. M.J., Kudriavtsev, V.V., 1995, Fluid flow structures in
staggered bank of cylinders located in a channel. Trans. ASME
117, 36 44.

Collins, R.J., 1973. Band width reduction by automatic renumbering.
Int. J. Numer. Meth. Eng. 6. 345-356.

Dhaubhadel, M.N., Reddy. J.N.. Telionis, D.P.. 1986. Penalty finite-
element analysis of coupled fluid flow and heat transfer for in-line
bundle of cylinders in cross flow. J. Nonlinear Mech. 21, 361 373.



Y. T. Krishne Gowda et al. | Ini. J. Heat and Fluid Flow 19 (1998 ) 49-55 55

Donea, J.S., Giuliani, S., Lavel, H., 1982. Finite element solution of
unsteady Navier-Stokes equations by fractional step method.
Comp. Meth. Appl. Mech. Eng. 30, 53-73.

Franz, Z., Fletcher, C.A., Behnia, M., 1995. Numerical laminar and
turbulent fluid flow and heat transfer predictions in tube banks. Int.
J. Numer. Meth. Heat Fluid Flow 5, 717 733.

Fujii, M., Fujii, T., Nagata, T., 1984. A numerical analysis of laminar
flow and heat transfer of air to in-line tube bank. Numer. Heat
Transfer 7, 89-102.

Krishne Gowda, Y.T., 1996. Finite element simulation of flow past
tube banks with heat transfer. Ph.D. thesis, 11T, Madras, India.
Launder, B.E.. Massey, T.H., 1978. The numerical predictions of
viscous flow and heat transfer in tube banks. J. Heat Transfer 100,

565-371.

Patnaik, B.S.V.P., Seetharamu, K.N., Narayana, P.A.A., 1996. Sim-
ulation of laminar confined flow past a circular cylinder with
integral wake splitter involving heat transfer. Int. J. Numer. Meth.
Heat Fluid Flow 6. 65-81.

Ramaswamy, B.. Jue, T.C., Akin, J.F., 1992. Semi-implicit and explicit
finite element schemes for coupled fluid/thermal problems. Int. J.
Numer. Meth. Eng. 34, 675- 696.

Wung, T.-S., Chen, C.J., 1989. Finite analytic solution of convective
heat transfer for tube arrays in cross flow. J. Heat Transfer 111,
633-640.

Zukauskas, A., 1987. Heat transter from tubes in cross flow. Adv. Heat
Transfer 18, 87--157.



